Calcium/calmodulin-dependent protein kinase II activity in focal ischemia with reperfusion in rats.

نویسندگان

  • S K Hanson
  • J C Grotta
  • M N Waxham
  • J Aronowski
  • P Ostrow
چکیده

BACKGROUND AND PURPOSE Evidence linking changes in calcium/calmodulin-dependent protein kinase II activity with ischemic cell death has been reported in animal models of global ischemia. The purpose of this study was to delineate the course of these changes after focal ischemia and to clarify the relation of changes in activity of calcium/calmodulin-dependent protein kinase II to the process of ischemic cell death. METHODS Change in calcium/calmodulin-dependent protein kinase II activity was evaluated in a rat model of focal ischemia after 5 minutes, 30 minutes, and 1 hour of tandem middle cerebral artery and common carotid artery occlusion both with and without reperfusion. RESULTS Calcium/calmodulin-dependent protein kinase II activity was significantly decreased after all three durations of ischemia followed by immediate decapitation compared with sham-operated animals, in both ischemic core and border-zone regions (P < .05 for all groups). Depression of activity occurred in a regionally graded fashion, with the most severe decrease in infarct core and progressively smaller decreases in samples moving out from the center, corresponding to the severity of histological injury later detected in infarct core and border-zone regions. There were only minor differences between the three durations of ischemia in the degree of enzyme depression noted in the more peripheral regions, indicating that the initial decrease in calcium/calmodulin-dependent protein kinase II activity is an early, sensitive marker for an ischemic insult. After reperfusion, the differences between the 5-minute group and longer periods of ischemia widened because of an increase toward baseline in the 5-minute group and a trend toward further decrease in the 30- and 60-minute groups. CONCLUSIONS The extreme sensitivity of calcium/calmodulin-dependent protein kinase II to focal ischemia and the parallel temporal and regional changes in its activity to those of more delayed cell injury point to a potential role for this enzyme in the process of excitotoxic injury.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of calcium/calmodulin-dependent kinase II following bovine rotavirus enterotoxin NSP4 expression

Objective(s): The rotavirus nonstructural protein 4 (NSP4) is responsible for the increase in cytoplasmic calcium concentration through a phospholipase C-dependent and phospholipase C-independent pathways in infected cells. It is shown that increasing of intracellular calcium concentration in rotavirus infected cells is associated with the activation of some members of protein kinases family su...

متن کامل

Calcium/calmodulin-dependent protein kinase II mediates cardioprotection of intermittent hypoxia against ischemic-reperfusion-induced cardiac dysfunction.

Intermittent high-altitude (IHA) hypoxia-induced cardioprotection against ischemia-reperfusion (I/R) injury is associated with the preservation of sarcoplasmic reticulum (SR) function. Although Ca(2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII) and phosphatase are known to modulate the function of cardiac SR under physiological conditions, the status of SR CaMKII and phosphatase durin...

متن کامل

Temperature modulation of ischemic neuronal death and inhibition of calcium/calmodulin-dependent protein kinase II in gerbils.

We used brief bilateral carotid artery occlusion in gerbils to examine the effects of temperature on ischemia-induced inhibition of calcium/calmodulin-dependent protein kinase II activity and neuronal death. In normothermic (36 degrees C) gerbils, ischemia induced a severe loss of hippocampal CA1 pyramidal neurons measured 7 days after ischemia (28.4 neurons/mm, n = 10; control density in 10 na...

متن کامل

Gene Expression Profile of Calcium/Calmodulin-Dependent Protein Kinase IIα in the Rat Hippocampus during Morphine Withdrawal

Introduction: Calcium/calmodulin-dependent protein kinase II (CaMKII) is highly expressed in the hippocampus, which has a pivotal role in reward-related memories and morphine dependence. Methods: In the present study, morphine tolerance was induced in male Wistar rats by 7 days repeated morphine injections once daily, and then gene expression profile of α-isoform of CaMKII (CaMKIIα) in the hipp...

متن کامل

P26: Long-Term Potentiation: The Mechanisms of CaMKII in Lerarning and Memory

Long-term potentiation (LTP) is a form of activity dependent plasticity that induced by high-frequency stimulation or theta burst stimulation and results in synaptic transmission. Several Studies have been shown that LTP is one of the most important processes in the CNS that plays an important role in learning and memory formation. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a major...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Stroke

دوره 25 2  شماره 

صفحات  -

تاریخ انتشار 1994